Warmup:
Solve the following systems:

$$
\begin{array}{ll}
y=-3 x+5 & y=-3(1)+5 \\
5 x-4 y=-3 & =-3+5 \\
5 x-4(-3 x+5)=-3 & \\
5 x+2 \\
5 x+12 x-20=-3 & \\
17 x-20=-3 & \\
+20 & +20 \\
17 x=17 & \\
x=1 &
\end{array}
$$

2. 73°
3. 60°
4. 52°
85°
5. 110°
6. $3 \cdot 360^{\circ}-180^{\circ}=900^{\circ}$
7. $3 \cdot 180^{\circ}-180^{\circ}=360^{\circ}$
8. $69^{\circ}-\mathrm{a}$
47°-b
116°-c
93°-d
86°-e
9. $30^{\circ}-\mathrm{m}$
$50^{\circ}-\mathrm{n}$
$82^{\circ}-\mathrm{p}$
$28^{\circ}-\mathrm{q}$
$32^{\circ}-r$
$78^{\circ}-\mathrm{s}$
118° - t
$50^{\circ}-\mathrm{u}$

Base Angles:

Vertex Angle: $\angle D$

Isosceles Triangle Conjecture: If a triangle is isosceles, then its base angles are congruent.
Converse of the Isosceles Triangle Conjecture: If a triangle has two congruent angles, then it is an isosceles triangle.

Equilateral/Equiangular Triangle Conjecture:

If a triangle is equilateral, then it is equiangular. If a triangle is equiangular, then it is equilateral.

